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ABSTRACT
Cyber-physical systems often consist of entities that interact with
each other over time. Meanwhile, as part of the continued digi-
tization of industrial processes, various sensor technologies are
deployed that enable us to record time-varying attributes (a.k.a.,
time series) of such entities, thus producing correlated time series.
To enable accurate forecasting on such correlated time series, this
paper proposes two models that combine convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs). The first
model employs a CNN on each individual time series, combines the
convoluted features, and then applies an RNN on top of the convo-
luted features in the end to enable forecasting. The second model
adds additional auto-encoders into the individual CNNs, making
the second model a multi-task learning model, which provides ac-
curate and robust forecasting. Experiments on a large real-world
correlated time series data set suggest that the proposed twomodels
are effective and outperform baselines in most settings.
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1 INTRODUCTION
Complex cyber-physical systems (CPSs) often consist of multiple en-
tities that interact with each other. With the continued digitization,
various sensor technologies are deployed to record time-varying
attributes of such entities, thus producing correlated time series.

For example, in an urban sewage system, sensors are deployed
to capture time-varying concentration levels of different chemicals
(e.g., NO3 and NH4) in sewage treatment plants. Different chemicals
affect each other due to biological and chemical processes, thus
making the different chemical time series correlated. As another
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example, in a vehicular transportation system, traffic sensors (e.g.,
loop detectors) are able to capture time-varying traffic information
(e.g., in the form of average speeds) of different road segments [6],
which produces traffic time series [5]. Since the traffic on a road
segment affects the traffic on other road segments, traffic time series
on different road segments correlate with each other [2, 13].

Accurate forecasting of correlated time series have the potential
to reveal holistic system dynamics of the underlying CPSs, including
identifying trends, predicting future behavior [14], and detecting
anomalies [9], which are important to enable effective operations of
the CPSs. For example, in an sewage system, time series forecasting
enables identifying the changing trends of different chemicals, early
warning of high concentrations of toxic chemicals, and predicting
the effect of incidents, e.g., drought or rains, which enables more
effective operations of the sewage system. Similarly, in an intelligent
transportation system, analyzing traffic time series enables travel
time forecasting, early warning of congestion, and predicting the
effect of incidents, which benefit drivers and fleet owners.

To enable accurate and robust correlated time series forecast-
ing, we propose two novel non-linear forecasting algorithms based
on deep neural networks—a Convolutional Recurrent Neural Net-
work (CRNN) and an Auto-Encoder Convolutional Recurrent Neu-
ral Network (AECRNN). In CRNNs, we first consider each of the
correlated time series independently and feed each time series into
a 1-dimensional convolutional neural network (CNN). The usage
of the CNNs helps us learn features for each individual time se-
ries. Next, the convoluted time series features are merged together,
which is then fed into a Recurrent Neural Network (RNN), with the
aim of learning the sequential information while considering the
correlations among different time series.

In AECRNNs, we add additional auto-encoders into CRNN. The
output of convoluted time series are not only merged together
to be fed into the RNN. In addition, each convoluted time series
is also reconstructed back to the original time series. Then, the
objective function combines the error of the prediction by the RNN
and the reconstruction discrepancy by the auto-encoders, making
AECRNN a multi-task learning model. The use of auto-encoders
makes the CNNs also learn representative features of each time
series, but not only distinct features for predicting future values.
In other words, the auto-encoders work as an extra regularization
which avoids overfitting, disregards outliers, and thus provides
more robust forecasting.

To the best of our knowledge, this is the first study that combines
CNNs and RNNs in a unified framework with the help of multi-
task learning to enable accurate forecasting for correlated time
series. Experiments on a large real-word chemical concentration
time series from a sewage treatment plant offer evidence that the
proposed methods are accurate and robust.
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2 PRELIMINARIES
A time series X (i) = ⟨x

(i)
1 ,x

(i)
2 , . . . ,x

(i)
m ⟩ is a time-ordered sequence

ofmeasurements, wheremeasurementx (i)k is recorded at time stamp
tk and we have tj < tk if 1 ≤ j < k ≤ m. Usually, the time
interval between two consecutive measurements is constant, i.e.,
tj+1 − tj = tk+1 − tk , 1 ≤ j,k < m. A correlated time series set is
denoted as X = ⟨X (1),X (2), . . . ,X (n)⟩, where time series in X are
correlated with each other. For example, in the sewage treatment
example, we have X = ⟨X (1),X (2),X (3)⟩, where X (1), X (2), and X (3)

represent the time series of NH4, NO3, and O2, respectively.
Problem statement: Given a correlated time series set X = ⟨X (1),
X (2), . . ., X (n)⟩, we aim at predicting the future measurements of a
specific, target time series in X . Without loss of generality, the first
time seriesX (1) is chosen as the target time series. More specifically,
we assume that the given time series in X have measurements cov-
ering a window [ta+1, ta+l ] that contains l time stamps, and we aim
at predicting time series X (1)’s measurements in a future window
[ta+l+1, ta+l+p ]. We call this problem p-step ahead forecasting.

3 RELATEDWORK
We categorize related studies w.r.t. two dimensions—linear vs. non-
linear forecasting and single vs. multiple time series (see Table 1).

Single Multiple
Linear [7] [11, 14]
Non-Linear NN RNN, LSTM, [10, 12], CRNN, AECRNN

Table 1: Related Work

We first consider linear methods for single time series. Here,
Autoregressive Integrated Moving Average (ARIMA) [7] is widely
used as a baseline method. Linear methods for multiple time series
also exist, e.g., multiple linear regression [11] and spatio-temporal
hiddenMarkovmodels [14]. Neural networks (NN) are able tomodel
non-linear relationships, which are often employed to enable non-
linear forecasting models. For example, Recurrent Neural Networks
(RNN) and Long Short Term Memory (LSTM) are able to provide
non-linear time series forecasting.

In this paper, we aim at providing non-linear forecasting models
that are able to support multiple time series, i.e., the right bottom cell
of Table 1. Multivariate time series convolutional neural network
(MTCNN) [12] uses a CNN to extract features from a multivari-
ate time series and then a fully connected neural network layer
to predict. We propose CRNN and AECRNN which outperform
existing methods in most settings. Similar to MTCNN, we first use
CNNs to extract features from multiple time series. However, we
instead use RNN in the proposed CRNN and AECRNN. In addition,
AECRNN also incorporates auto-encoders, making it a multi-task
learning model, which enables effective and robust forecasting. A
similar multi-task learning model T2INet [8] employs CNN and
auto-encoders to enable classification and clustering, but not for
prediction. Non-deep learning methods [10] also exist.

4 PROPOSED MODELS
Convolutional Recurrent Neural Network (CRNN): We pro-
pose a CRNN that utilizes a combination of Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) to enable
p-step ahead forecasting for a set of correlated time series. CNNs

are used successfully for classifying images by learning the features
and patterns of the images. RNNs are able to capture dependencies
of a sequence of values, thus being good at forecasting future values.
This motivates us to first use CNNs to extract distinctive features
of each of the correlated multiple time series, and then to apply
RNNs on top of the combined output of CNNs to predict near future
values of the target time series. We call this model CRNN (cf. Fig. 1).

Specifically, CRNN takes as input multiple time series, where
each input time series contains l measurements. Part A of Fig 1
shows an example where |X | = 3 correlated time series X (1),X (2),
andX (3) are fed into CRNN as input. CRNN outputs a single time se-
ries, say Z = ⟨z1, z2, . . . , zp ⟩, that contains p measurements which
are the predicted p measurements of the target time series X (1) in
the near future (see Part G of Fig 1).

In the CRNN, we first treat each time series in X independently.
In particular, we treat each time series as a 1× l matrix, as shown in
part B of Fig. 1. Next, we apply convolutions on each time series at
the convolutional layer (see part C of Fig. 1). In particular, we apply
α , e.g., 3, in Fig. 1, filters to conduct convolutions, with the aim
to extract distinctive features in the individual input time series.
This produces α matrices with size of 1 × l . Next, in the pooling
layer (see part D of Fig. 1), for each matrix, we apply a max-pooling
operator to capture the most representative features of the time
series as a 1 × l

2 matrix by using a 1× 2 window with a stride set to
2. Thus, we obtain a total of α matrices of size 1 × l

2 for each input
time series. Note that we may apply the convolution and pooling
layers multiple times. After convolution and pooling, we have |X |

cubes of size α × 1 × l
2 as the output of the pooling layers (see part

D Fig. 1-D). So far, the work of CNNs finishes.
Next, the |X | cubes are concatenated into an n-dimensional vec-

tor (see part E of Fig. 1), where n = |X | ×α × 1× l
2 to be fed into an

RNN (see part F of Fig. 1) for the predicting purpose. We obtain Z
as the near future measurements of the target time series (see Part
G of Fig 1). The objective function of CRNN is

J1 =
1
p

p∑
i=1

Error(zi ,x
(1)
a+l+i )

Here, Error(·, ·) is an error function that measures the discrepancy
(e.g., mean square error) between the predicted measurement zi
and the ground truth measurement x (1)a+l+i at time stamp a + l + i .

Note that the RNN can be easily extended to enable forecasting
for all time series, but not just a single target time series.

Auto Encoder CRNN (AECRNN): In AECRNN, we incorpo-
rate an auto-encoder to each CNN (see Fig 2). The intuition behind
AECRNN is to use auto-encoders to learn robust features and ignore
features that represent outliers. The auto-encoders also work as
an additional regularization to enable learning most representative
features for all input time series but not overfit to features that are
specific to forecasting the target time series in the training data.

After the pooling layer, we not only concatenate the output
cubes of the pooling layer, but also feed the output cubes to an
additional deconvolution layer (see Part E of Fig 2). In particular,
each cube is deconvoluted into α matrices with the same size as the
matrices in part C. Then, we obtain |X | groups of matrices, where
each group has α matrices. Next, we apply Sigmoid activation
function to each matrix group to produce a 1 × l matrix. This
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Figure 1: Convolutional Recurrent Neural Network (CRNN)
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Figure 2: Auto-Encoder Convolutional Recurrent Neural Network (AECRNN)

corresponds |X | reconstructed time series, e.g., X̂ (1), X̂ (2), and X̂ (3),
where X̂ (i) = ⟨x̂

(i)
a+1, x̂

(i)
a+2, . . . , x̂

(i)
a+l ⟩. The objective function of the

additional auto encoders is

J2 =
1
l
·

1
|X |

·

|X |∑
k=1

l∑
i=1

Error(x̂ (k )a+i ,x
(k )
a+i ).

It measures the discrepancy between the reconstructed measure-
ment x̂ (k )a+i and the original, ground-truth measurement x (k )a+i at the
(a + i)-th time stamp over all |X | time series.

The final objective function of AECRNN is J = J1 + J2. This
makes AECRNN a multi-task learning model, where one task is to
forecast the p future measurements of the target time series (i.e.,
J1) and the other tasks are to reconstruct |X | time series’ l known
measurements (i.e., J2).

5 EMPIRICAL STUDY
Data Sets:We use a large time series data set provided by a sewage
treatment center from Aalborg, Denmark. The sewage treatment
center has 6 tanks and three different sensors are deployed in each
tank to measure the concentrations of three different chemicals,
NH4, NO3, and O2, every 2 minutes. The data covers a period of 3
years in total. We consider the three time series of three chemicals
from a specific tank as correlated time series.

We choose multiple windows over the 3-year period to test the
proposed methods. For each window, we use the first 84% of the
data for training and validation, and the remaining 16% of data

for testing. When learning, we further segment the training data
into multiple training cases using sliding windows. In particular, in
each segment, we use a sequence of l measurements as the input
data to the proposed models and use the immediately following p
measurements as the ground truth data to calculate the predication
errors (i.e., J1) to enable back-propagation.
Parameters: We vary three problem parameters in the experiments
according to Table 2, where the default values are shown in bold.
Note that the problem parameters define different problem settings
and are independent of solutions.

Specifically, we vary the number of time series, i.e., the cardinal-
ity of the correlated time series set |X |, from 1, 2, to 3. When |X | = 1,
we only consider a single time series, which is also the target time
series. Then, we add 1 and 2 additional correlated time series with
the target time series, respectively. Next, we vary the length l of
time series when training. We also vary p to enable p-step ahead
forecasting, where a large p means forecasting far into the future.

In addition, we vary solution parameters (a.k.a. hyper-parameters)
that are specific to solutions. In particular, for the proposed deep
learning based methods, we vary the number of convolution and
pooling layers (1, 2, and 3), number of filters per convolution layer
(2, 3, 4, 5, 8, 10, and 16), the filer size (1, 2, 3, 5, and 10), and hidden
state size in RNNs (3, 4, 5, 6). We identify the optimal solution
parameters for each problem parameter setting.
Baselines: We consider 5 baselines. Yesterday is a simple, linear
method that propagates the last known value of the time series for
the entire prediction window, which is commonly used in financial



|X |, l , p YESTERDAY ARIMA RNN LSTM MTCNN CRNN AECRNN
1, 200, 100 16.59±2.70 18.77±2.65 9.50±1.39 10.16±2.60 10.49±0.80 10.78±1.26 11.33±2.21
2, 200, 100 16.59±2.70 18.77±2.65 9.43±1.45 10.79±1.61 11.08±0.91 7.91±0.37 8.45±0.61
3, 200, 100 16.59±2.70 18.77±2.65 9.59±1.85 10.77±0.57 10.24±1.45 9.08±1.74 9.59±0.93
2, 10, 100 18.23±2.93 20.85±3.98 9.86±2.77 9.12±1.93 10.01±2.75 9.48±2.44 9.55±2.56
2, 50, 100 16.41±2.25 20.75±5.37 10.77±3.10 11.90±3.15 12.20±3.66 11.83±3.30 9.56±2.52
2, 100, 100 17.90±1.58 36.09±24.37 12.62±2.89 12.92±2.39 12.43±1.84 12.78±3.30 11.04±1.37
2, 200, 100 16.59±2.70 18.77±2.65 9.43±1.45 10.79±1.61 11.08±0.91 7.91±0.37 8.45±0.61
2, 200, 1 1.42±0.25 0.78±0.05 5.68±2.04 4.72±1.07 3.54±0.92 3.97±1.40 7.99±5.88
2, 200, 25 12.95±3.35 11.67±2.61 10.04±2.74 9.98±3.20 11.38±1.92 7.42±2.70 7.12±1.92
2, 200, 50 17.49±2.47 18.76±2.73 9.42±2.36 9.13±2.45 8.77±0.83 10.06±2.28 7.81±1.63
2, 200, 100 16.59±2.70 18.77±2.65 9.43±1.45 10.79±1.61 11.08±0.91 7.91±0.37 8.45±0.61

Table 3: Accuracy, MAPE with Standard Deviations

Number of time series |X | 1, 2, 3
Training length l 10, 50, 100, 200
p-step ahead prediction 1, 25, 50, 100

Table 2: Problem Parameters

time series prediction. Methods ARIMA, RNN, LSTM, and MTCNN
are covered in Section 3.
ImplementationDetails: Allmethods are implemented in Python
3.6, where the deep learning methods are implemented using Ten-
sorflow 1.7. A computer with Intel i7-4700MQ CPU, 4 cores, 16 GB
RAM is used to conduct all experiments.
Experimental Results: We use both root mean square error
(RMSE) and mean absolute percentage error (MAPE) to evaluate
accuracy. Due to space limitation, we report on results only based
on MAPE. Results based on RMSE and additional experiments on
a different data set are provided elsewhere [1]. Table 3 shows the
average MAPE values with standard deviations while varying |X |,
l , and p. When varying a problem parameter, we keep the other
problem parameters with default values according to Table 2.

When |X | = 1, i.e., forecasting a single target time series, RNN
has the best accuracy. However, when |X | > 1, i.e., forecasting the
target time series with multiple correlated time series, the proposed
CRNN and AECRNN achieve the best accuracy. Note that MTCNN,
CRNN, and AECRNN achieve better accuracy when considering
correlated times series, meaning that they take advantage of corre-
lated time series. In contrast, Yesterday and ARIMA cannot consider
the additional correlated time series, and RNN and LSTM do not
show clear improvements. When the input training sequence is
very short, e.g., l = 10, LSTM gives the best accuracy. As l increases,
CRNN and AECRNN achieves better accuracy compared to other
methods. This suggests that CRNN and AECRNN are able to take ad-
vantages of having longer training sequences. When p = 1, ARIMA
gives very accurate prediction, which suggests that linear model is
very good at short-term forecasting. However, when predicting far
into the future , i.e., when p is large, ARIMA deteriorates quickly
and CRNN and AECRNN give more accurate forecasting.

Finally, we conducted an experiment to show that AECRNN is
able to provide robust forecasting when the input time series (TS)
are uncorrelated. In particular, we consider three cases: a single
target TS alone, the target TS with a correlated TS, and the target
TS with a generated, uncorrelated TS. The results in Table 4 suggest
that (1) AECRNN is more robust to deal with the uncorrelated time
series, due to the auto-encoders in AECRNN; (2) CRNN is able to
take more advantage when having correlated time series.

CRNN AECRNN
Single target TS 10.8 10.7
With a correlated TS 8.3 9.1
With an uncorrelated TS 13.0 10.7

Table 4: Dealing with uncorrelated time series, MAPE

6 CONCLUSION AND OUTLOOK
We propose two deep learning models, CRNN and AECRNN, to
enable accurate correlated time series forecasting. Experiments on
a large real world time series show promising results. In the future,
it is of interest to verify the proposed models on time series from
different domains such as transportation [3, 4] and to study the
scalability of the proposed models for large time series data, e.g.,
by exploring parallel computing frameworks [15].
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